Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Ferro-rotational magnet RbFe(SO4)2has attracted attention for its stable ferro-rotational phase and electric-field-controlled magnetic chirality. This work presents the multiferroic properties andH–Tphase diagram of RbFe(SO4)2, which have been underexplored. Our measurements of magnetic susceptibility, ferroelectric polarization, and dielectric constant under various magnetic fields reveal four distinct phases: (I) a ferroelectric and helical magnetic phase below 4 K and 6 T, (II) a paraelectric and collinear magnetic phase below 4 K and above 6 T, (III) a paraelectric and non-collinear magnetic phase below 4 K and above 9 T, and (IV) a paraelectric and paramagnetic above 4 K. This study clarifies the multiferroic behavior andH–Tphase diagram of RbFe(SO4)2, providing valuable insights into ferro-rotational magnets.more » « lessFree, publicly-accessible full text available March 27, 2026
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            We report an investigation of V-coupled cavity interband cascade (IC) lasers (ICLs) emitting in the 3-μm wavelength range, employing various waveguide structures and coupler sizes. Type-II ICL devices with double-ridge waveguides exhibited wide tuning ranges exceeding 153 nm. Type-I ICL devices with deep-etched waveguides achieved single-mode emission with wavelength tunable over 100 nm at relatively high temperatures up to 250 K. All devices exhibited a side-mode suppression ratio higher than 30 dB. By comparing the performance of all devices with different sizes and configurations, a good tolerance against the structural parameter variations of the V-coupled cavity laser (VCCL) design is demonstrated, validating the advantages of the VCCL to achieve single-mode emission with wide tunability.more » « less
- 
            Abstract The thermal Hall effect recently provided intriguing probes to the ground state of exotic quantum matters. These observations of transverse thermal Hall signals lead to the debate on the fermionic versus bosonic origins of these phenomena. The recent report of quantum oscillations (QOs) in Kitaev spin liquid points to a possible resolution. The Landau level quantization would most likely capture only the fermionic thermal transport effect. However, the QOs in the thermal Hall effect are generally hard to detect. In this work, we report the observation of a large oscillatory thermal Hall effect of correlated Kagome metals. We detect a 180-degree phase change of the oscillation and demonstrate the phase flip as an essential feature for QOs in the thermal transport properties. More importantly, the QOs in the thermal Hall channel are more profound than those in the electrical Hall channel, which strongly violates the Wiedemann–Franz (WF) law for QOs. This result presents the oscillatory thermal Hall effect as a powerful probe to the correlated quantum materials.more » « less
- 
            Interband cascade lasers (ICLs) are efficient and compact mid-infrared (3-5 µm) light sources with many applications. By enhancing the coupling coefficient and using a type-I ICL wafer, single-mode ICLs were demonstrated based on V-coupled cavity with significantly extended tuning range and with a side mode suppression ratio (SMSR) exceeding 35 dB in continuous wave operation near 3 µm. A V-coupled cavity ICL exhibited a wavelength tuning up to 67 nm at a fixed temperature, and the total tuning range exceeds 210 nm when the heat sink temperature is adjusted from 80 to 180 K. The realization of single-mode in such a wide temperature range with a tuning range exceeding 210 nm verified the advantage of V-coupled cavity ICLs for effective detection of multiple gas species. This is very different from the conventional distributed feedback (DFB) laser where the single-mode operation is restricted to a narrow temperature range, in which the match between the gain peak and the DFB grating period determined wavelength is required. Another V-coupled cavity ICL is tuned over 120 nm from 2997.56 nm to 3117.50 nm with the heat-sink temperature varied from 210 K to 240 K, over 100 K higher than the previously reported maximum operating temperature for V-coupled cavity ICLs.more » « less
- 
            Because of the increasing demand, high-power, high-rate energy storage devices based on electrode materials have attracted immense attention. However, challenges remain to be addressed to improve the concentration-dependent kinetics of ionic diffusion and understand phase transformation, interfacial reactions, and capacitive behaviors that vary with particle morphology and scanning rates. It is valuable to understand the microscopic origins of ion transport in electrode materials. In this review, we discuss the microscopic transport phenomena and their dependence on ion concentration in the cathode materials, by comparing dozens of well-studied transition metal oxides, sulfides, and phosphates, and in the anode materials, including several carbon species and carbides. We generalize the kinetic effects on the microscopic ionic transport processes from the phenomenological points of view based on the well-studied systems. The dominant kinetic effects on ion diffusion varied with ion concentration, and the pathway- and morphology-dependent diffusion and capacitive behaviors affected by the sizes and boundaries of particles are demonstrated. The important kinetic effects on ion transport by phase transformation, transferred electrons, and water molecules are discussed. The results are expected to shed light on the microscopic limiting factors of charging/discharging rates for developing new intercalation and conversion reaction systems.more » « less
- 
            Abstract Metals with kagome lattice provide bulk materials to host both the flat-band and Dirac electronic dispersions. A new family of kagome metals is recently discovered inAV6Sn6. The Dirac electronic structures of this material needs more experimental evidence to confirm. In the manuscript, we investigate this problem by resolving the quantum oscillations in both electrical transport and magnetization in ScV6Sn6. The revealed orbits are consistent with the electronic band structure models. Furthermore, the Berry phase of a dominating orbit is revealed to be aroundπ, providing direct evidence for the topological band structure, which is consistent with calculations. Our results demonstrate a rich physics and shed light on the correlated topological ground state of this kagome metal.more » « less
- 
            One of the most important issues in modern condensed matter physics is the realization of fractionalized excitations, such as the Majorana excitations in the Kitaev quantum spin liquid. To this aim, the 3d-based Kitaev material Na2Co2TeO6 is a promising candidate whose magnetic phase diagram of B // a* contains a field-induced intermediate magnetically disordered phase within 7.5 T < |B| < 10 T. The experimental observations, including the restoration of the crystalline point group symmetry in the angle-dependent torque and the coexisting magnon excitations and spinon-continuum in the inelastic neutron scattering spectrum, provide strong evidence that this disordered phase is a field induced quantum spin liquid with partially polarized spins. Our variational Monte Carlo simulation with the effective K-J1-Γ-Γ'-J3 model reproduces the experimental data and further supports this conclusion.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
